Learning Simulation Control in General Game-Playing Agents
نویسندگان
چکیده
The aim of General Game Playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. One of the main challenges such agents face is to automatically learn knowledge-based heuristics in real-time, whether for evaluating game positions or for search guidance. In recent years, GGP agents that use Monte-Carlo simulations to reason about their actions have become increasingly more popular. For competitive play such an approach requires an effective search-control mechanism for guiding the simulation playouts. In here we introduce several schemes for automatically learning search guidance based on both statistical and reinforcement learning techniques. We compare the different schemes empirically on a variety of games and show that they improve significantly upon the current state-of-theart in simulation-control in GGP. For example, in the chesslike game Skirmish, which has proved a particularly challenging game for simulation-based GGP agents, an agent employing one of the proposed schemes achieves 97% winning rate against an unmodified agent.
منابع مشابه
Simulation Control in General Game Playing Agents
The aim of General Game Playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. One of the main challenges such agents face is to automatically learn knowledge-based heuristics in realtime, whether for evaluating game positions or for search guidance. In recent years, GGP agents that use Monte...
متن کاملSimulation-Based Approach to General Game Playing
The aim of General Game Playing (GGP) is to create intelligent agents that automatically learn how to play many different games at an expert level without any human intervention. The most successful GGP agents in the past have used traditional game-tree search combined with an automatically learned heuristic function for evaluating game states. In this paper we describe a GGP agent that instead...
متن کاملA Simulation-Based General Game Player
The aim of General Game Playing (GGP) is to create intelligent agents that can automatically learn how to play many different games at an expert level without any human intervention. The traditional design model for GGP agents has been to use a minimax-based game-tree search augmented with an automatically learned heuristic evaluation function. The first successful GGP agents all followed that ...
متن کاملGeneral Game Playing with Ants
General Game Playing (GGP) aims at developing game playing agents that are able to play a variety of games and, in the absence of pre-programmed game specific knowledge, become proficient players. The challenge of making such a player has led to various techniques being used to tackle the problem of game specific knowledge absence. Most GGP players have used standard tree-search techniques enha...
متن کاملCI in General Game Playing - To Date Achievements and Perspectives
Multigame playing agents are programs capable of autonomously learning to play new, previously unknown games. In this paper, we concentrate on the General Game Playing Competition which defines a universal game description language and acts as a framework for comparison of various approaches to the problem. Although so far the most successful GGP agents have relied on classic Artificial Intelli...
متن کامل